
1

Create with Code
Unit 5 Lesson Plans

© Unity 2021 Create with Code - Unit 5

2

5.1 Clicky Mouse

Steps:
Step 1: Create project and switch to 2D view

Step 2: Create good and bad targets

Step 3: Toss objects randomly in the air

Step 4: Replace messy code with new methods

Step 5: Create object list in Game Manager

Step 6: Create a coroutine to spawn objects

Step 7: Destroy target with click and sensor

Example of project by end of lesson

Length: 60 minutes

Overview: It’s time for the final unit! We will start off by creating a new project and
importing the starter files, then switching the game’s view to 2D. Next we will
make a list of target objects for the player to click on: Three “good” objects
and one “bad”. The targets will launch spinning into the air after spawning at
a random position at the bottom of the map. Lastly, we will allow the player
to destroy them with a click!

Project
Outcome:

A list of three good target objects and one bad target object will spawn in a
random position at the bottom of the screen, thrusting themselves into the
air with random force and torque. These targets will be destroyed when the
player clicks on them or they fall out of bounds.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Switch the game to 2D view for a different perspective
- Add torque to the force of an object
- Create a Game Manager object that controls game states as well as

spawning
- Create a List of objects and return their length with Count
- Use While Loops to repeat code while something is true
- Use OnMouseDown to enable the player to click on things

© Unity 2021 Create with Code - Unit 5

https://docs.google.com/document/d/1HwgdyXB3pYrdhD9Vcscy--fVhpSHGjNhD7Bc2hhPMXs/edit#heading=h.t9imqyt6oys1
https://docs.google.com/document/d/1HwgdyXB3pYrdhD9Vcscy--fVhpSHGjNhD7Bc2hhPMXs/edit#heading=h.gwojefu70x76

3

Step 1: Create project and switch to 2D view
One last time… we need to create a new project and download the starter files to get things up
and running.
1. Open Unity Hub and create an empty “Prototype 5”

project in your course directory on the correct
Unity version.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 1

2. Click to download the Prototype 5 Starter Files,
extract the compressed folder, and then import the
.unitypackage into your project.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 2

3. Open the Prototype 5 scene, then delete the
sample scene without saving

4. Click on the 2D icon in Scene view to put Scene
view in 2D

5. (optional) Change the texture and color of the
background and the color of the borders

- New Concept: 2D View
- Demo: Notice in 2D view: You can’t

rotate around objects or move them in
the Z direction

© Unity 2021 Create with Code - Unit 5

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://connect-prd-cdn.unity.com/20210507/c7c2c2ce-f2f4-492e-819c-58096e11ab9f/Prototype%205%20-%20Starter%20Files.zip?_ga=2.33909089.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

4

Step 2: Create good and bad targets
The first thing we need in our game are three good objects to collect, and one bad object to
avoid. It’ll be up to you to decide what’s good and what’s bad.

1. From the Library, drag 3 “good” objects and 1 “bad”
object into the Scene, rename them “Good 1”, “Good 2”,
“Good 3”, and “Bad 1”

2. Add Rigid Body and Box Collider components, then make
sure that Colliders surround objects properly

3. Create a new Scripts folder, a new “Target.cs” script
inside it, attach it to the Target objects

4. Drag all 4 targets into the Prefabs folder to create
“original prefabs”, then delete them from the scene

- Tip: The bigger the collider
boxes, the easier it will be to hit
them

- Tip: Try selecting multiple
objects and applying
scripts/components - very
handy

Step 3: Toss objects randomly in the air
Now that we have 4 target prefabs with the same script, we need to toss them into the air with a
random force, torque, and position.

1. In Target.cs, declare a new private Rigidbody
targetRb; and initialize it in Start()

2. In Start(), add an upward force multiplied by a
randomized speed

3. Add a torque with randomized xyz values
4. Set the position with a randomized X value

- New Function: AddTorque
- Tip: Test with different values by

dragging them in during runtime
- Don’t worry: We’re going to fix all these

hard-coded values next

private Rigidbody targetRb;

void Start() {
targetRb = GetComponent<Rigidbody>();
targetRb.AddForce(Vector3.up * Random.Range(12, 16), ForceMode.Impulse);
targetRb.AddTorque(Random.Range(-10, 10), Random.Range(-10, 10),
Random.Range(-10, 10), ForceMode.Impulse);
transform.position = new Vector3(Random.Range(-4, 4), -6); }

© Unity 2021 Create with Code - Unit 5

5

Step 4: Replace messy code with new methods
Instead of leaving the random force, torque, and position making our Start() function messy and
unreadable, we’re going to store each of them in brand new clearly named custom methods.

1. Declare and initialize new private float variables for minSpeed,
maxSpeed, maxTorque, xRange, and ySpawnPos;

2. Create a new function for Vector3 RandomForce() and call it in Start()
3. Create a new function for float RandomTorque() and call it in Start()
4. Create a new function for RandomSpawnPos(), have it return a new

Vector3 and call it in Start()

private float minSpeed = 12;
private float maxSpeed = 16;
private float maxTorque = 10;
private float xRange = 4;
private float ySpawnPos = -6;

void Start() {
...
targetRb.AddForce(... RandomForce(), ForceMode.Impulse);
targetRb.AddTorque(... RandomTorque(), RandomTorque(), RandomTorque(),

ForceMode.Impulse);
transform.position = ... RandomSpawnPos();

}

Vector3 RandomForce() {
return Vector3.up * Random.Range(minSpeed, maxSpeed);

}
float RandomTorque() {

return Random.Range(-maxTorque, maxTorque);
}
Vector3 RandomSpawnPos() {

return new Vector3(Random.Range(-xRange, xRange), ySpawnPos);
}

© Unity 2021 Create with Code - Unit 5

6

Step 5: Create object list in Game Manager
The next thing we should do is create a list for these objects to spawn from. Instead of making
a Spawn Manager for these spawn functions, we’re going to make a Game Manager that will
also control game states later on.

1. Create a new “Game Manager” Empty object,
attach a new GameManager.cs script, then open it

2. Declare a new public List<GameObject> targets;,
then in the Game Manager inspector, change the
list Size to 4 and assign your prefabs

- New Concept: Lists
- New Concept: Game Manager
- Demo: Feel free to reference old code:

We used an array instead of a list to
spawn the animals in Unit 2

Step 6: Create a coroutine to spawn objects
Now that we have a list of object prefabs, we should instantiate them in the game using
coroutines and a new type of loop.

1. Declare and initialize a new private float spawnRate
variable

2. Create a new IEnumerator SpawnTarget () method
3. Inside the new method, while(true), wait 1 second,

generate a random index, and spawn a random target
4. In Start(), use the StartCoroutine method to begin

spawning objects

- Tip: Feel free to reference old code:
we used coroutines for the
powerup cooldown in Unit 4

- Tip: Arrays return an integer with
.Length, while Lists return an
integer with .Count

- New Concept: While Loops

private float spawnRate = 1.0f;

void Start() { StartCoroutine(SpawnTarget()); }

IEnumerator SpawnTarget() {
while (true) {

yield return new WaitForSeconds(spawnRate);
int index = Random.Range(0, targets.Count);
Instantiate(targets[index]); } }

© Unity 2021 Create with Code - Unit 5

7

Step 7: Destroy target with click and sensor
Now that our targets are spawning and getting tossed into the air, we need a way for the player
to destroy them with a click. We also need to destroy any targets that fall below the screen.

1. In Target.cs, add a new method for private void
OnMouseDown() { } , and inside that method,
destroy the gameObject

2. Add a new method for private void
OnTriggerEnter(Collider other) and inside that
function, destroy the gameObject

- New Function: OnMouseDown
- Tip: There is also OnMouseUp, and

OnMouseEnter, but Down is definitely
the one we want

- Tip: You could use Update and check if
target y position is lower than a certain
value, but a sensor is better because it
doesn't run all the time

private void OnMouseDown() {
Destroy(gameObject); }

private void OnTriggerEnter(Collider other) {
Destroy(gameObject); }

Lesson Recap
New
Functionality

● Random objects are tossed into the air on intervals
● Objects are given random speed, position, and torque
● If you click on an object, it is destroyed

New Concepts
and Skills

● 2D View
● AddTorque
● Game Manager
● Lists
● While Loops
● Mouse Events

Next Lesson ● We’ll add some effects and keep track of score!

© Unity 2021 Create with Code - Unit 5

8

5.2 Keeping Score

Steps:
Step 1: Add Score text position it on screen

Step 2: Edit the Score Text’s properties

Step 3: Initialize score text and variable

Step 4: Create a new UpdateScore method

Step 5: Add score when targets are destroyed

Step 6: Assign a point value to each target

Step 7: Add a Particle explosion

Example of project by end of lesson

Length: 60 minutes

Overview: Objects fly into the scene and the player can click to destroy them, but
nothing happens. In this lesson, we will display a score in the user interface
that tracks and displays the player’s points. We will give each target object a
different point value, adding or subtracting points on click. Lastly, we will add
cool explosions when each target is destroyed.

Project
Outcome:

A “Score: “ section will display in the UI, starting at zero. When the player
clicks a target, the score will update and particles will explode as the target
is destroyed. Each “Good” target adds a different point value to the score,
while the “Bad” target subtracts from the score.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Create UI Elements in the Canvas
- Lock elements and objects into place with Anchors
- Use variables and script communication to update elements in the UI

© Unity 2021 Create with Code - Unit 5

https://docs.google.com/document/d/1NEzZB8uVjvU-m1LICTPvltqaXiHIYTicPj7ct2cqiVo/edit#heading=h.t9imqyt6oys1

9

Step 1: Add Score text position it on screen
In order to display the score on-screen, we need to add our very first UI element.
1. In the Hierarchy, Create > UI > TextMeshPro text,

then if prompted click the button to Import TMP
Essentials

2. Rename the new object “Score Text”, then zoom
out to see the canvas in Scene view

3. Change the Anchor Point so that it is anchored
from the top-left corner

4. In the inspector, change its Pos X and Pos Y so
that it is in the top-left corner

- New Concept: Text Mesh Pro / TMPro
- New Concept: Canvas
- New Concept: Anchor Points
- Tip: Look at how it displays in scene

vs game view. It may be hard to see
white text depending on the
background

Step 2: Edit the Score Text’s properties
Now that the basic text is in the scene and positioned properly, we should edit its properties so
that it looks nice and has the correct text.

1. Change its text to “Score:”
2. Choose a Font Asset, Style, Size, and Vertex color

to look good with your background

© Unity 2021 Create with Code - Unit 5

10

Step 3: Initialize score text and variable
We have a great place to display score in the UI, but nothing is displaying there! We need the UI
to display a score variable, so the player can keep track of their points.

1. At the top of GameManager.cs, add “using TMPro;”
2. Declare a new public TextMeshProUGUI scoreText, then assign that

variable in the inspector
3. Create a new private int score variable and initialize it in Start() as

score = 0;
4. Also in Start(), set scoreText.text = "Score: " + score;

- New Concept:
Importing Libraries

using TMPro;

private int score;
public TextMeshProUGUI scoreText;

void Start() {
StartCoroutine(SpawnTarget());
score = 0;
scoreText.text = "Score: " + score; }

Step 4: Create a new UpdateScore method
The score text displays the score variable perfectly, but it never gets updated. We need to write
a new function that racks up points to display in the UI.

1. Create a new private void UpdateScore method that requires
one int scoreToAdd parameter

2. Cut and paste scoreText.text = "Score: " + score; into the new
method, then call UpdateScore(0) in Start()

3. In UpdateScore(), increment the score by adding
score += scoreToAdd;

4. Call UpdateScore(5) in the spawnTarget() function

- New Concept: Custom
functions requiring
parameters

- Don’t worry: It doesn’t
make sense to add to
score when spawned, this
is just temporary

void Start() {
...scoreText.text = "Score: " + score;
UpdateScore(0); }

IEnumerator SpawnTarget() {
while (true) { ... UpdateScore(5); }

private void UpdateScore(int scoreToAdd) {
score += scoreToAdd;
scoreText.text = "Score: " + score; }

© Unity 2021 Create with Code - Unit 5

11

Step 5: Add score when targets are destroyed
Now that we have a method to update the score, we should call it in the target script whenever
a target is destroyed.

1. In GameManager.cs, make the UpdateScore method public
2. In Target.cs, create a reference to private GameManager

gameManager;
3. Initialize GameManager in Start() using the Find() method
4. When a target is destroyed, call UpdateScore(5);, then

delete the method call from SpawnTarget()

- Tip: Feel free to reference old
code: We used script
communication in Unit 3 to
stop the game on GameOver

- Warning: If you try to call
UpdateScore while it’s private,
it won’t work

GameManager.cs
IEnumerator SpawnTarget() {

while (true) { ... UpdateScore(5); }

private public void UpdateScore(int scoreToAdd) { ... }

Target.cs
private GameManager gameManager;

void Start() {
... gameManager = GameObject.Find("Game Manager")

.GetComponent<GameManager>();}

private void OnMouseDown() {
... gameManager.UpdateScore(5); }

Step 6: Assign a point value to each target
The score gets updated when targets are clicked, but we want to give each of the targets a
different value. The good objects should vary in point value, and the bad object should subtract
points.

1. In Target.cs, create a new public int pointValue variable
2. In each of the Target prefab’s inspectors, set the Point

Value to whatever they’re worth, including the bad
target’s negative value

3. Add the new variable to UpdateScore(pointValue);

- Tip: Here’s the beauty of variables
at work. Each target $ can
have their own unique pointValue!

public int pointValue;

private void OnMouseDown() {
Destroy(gameObject);
gameManager.UpdateScore(5 pointValue); }

© Unity 2021 Create with Code - Unit 5

12

Step 7: Add a Particle explosion
The score is totally functional, but clicking targets is sort of… unsatisfying. To spice things up,
let’s add some explosive particles whenever a target gets clicked!

1. In Target.cs, add a new public ParticleSystem explosionParticle
variable

2. For each of your target prefabs, assign a particle prefab from
Course Library > Particles to the Explosion Particle variable

3. In the OnMouseDown() function, instantiate a new explosion
prefab

public ParticleSystem explosionParticle;

private void OnMouseDown() {
Destroy(gameObject);
Instantiate(explosionParticle, transform.position,
explosionParticle.transform.rotation);
gameManager.UpdateScore(pointValue); }

Lesson Recap
New
Functionality

● There is a UI element for score on the screen
● The player’s score is tracked and displayed by the score text when hit a

target
● There are particle explosions when the player gets an object

New Concepts
and Skills

● TextMeshPro
● Canvas
● Anchor Points
● Import Libraries
● Custom methods with parameters
● Calling methods from other scripts

Next Lesson ● We’ll use some UI elements again - this time to tell the player the game is
over and reset our game!

© Unity 2021 Create with Code - Unit 5

13

5.3 Game Over

Steps:
Step 1: Create a Game Over text object

Step 2: Make GameOver text appear

Step 3: Create GameOver function

Step 4: Stop spawning and score on GameOver

Step 5: Add a Restart button

Step 6: Make the restart button work

Step 7: Show restart button on game over

Example of project by end of lesson

Length: 60 minutes

Overview: We added a great score counter to the game, but there are plenty of other
game-changing UI elements that we could add. In this lesson, we will create
some “Game Over” text that displays when a “good” target object drops
below the sensor. During game over, targets will cease to spawn and the
score will be reset. Lastly, we will add a “Restart Game” button that allows
the player to restart the game after they have lost.

Project
Outcome:

When a “good” target drops below the sensor at the bottom of the screen, the
targets will stop spawning and a “Game Over” message will display across
the screen. Just underneath the “Game Over” message will be a “Reset
Game” button that reboots the game and resets the score, so the player can
enjoy it all over again.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Make UI elements appear and disappear with .SetActive
- Use Script Communication and Game states to have a working “Game

Over” screen
- Restart the game using a UI button and Scene Management

© Unity 2021 Create with Code - Unit 5

https://docs.google.com/document/d/1NgrfvVuD6BbmiY3VF9oNfvPNatNJMZqi-iI4UUe5F3w/edit#heading=h.4uqbkjeyz8n7

14

Step 1: Create a Game Over text object
If we want some “Game Over” text to appear when the game ends, the first thing we’ll do is
create and customize a new UI text element that says “Game Over”.
1. Right-click on the Canvas, create a new UI >

TextMeshPro - Text object, and rename it “Game
Over Text”

2. In the inspector, edit its Text, Pos X, Pos Y, Font
Asset, Size, Style, Color, and Alignment

3. Set the “Wrapping” setting to “Disabled”

- Tip: The center of the screen is the
best place for this Game Over
message - it grabs the player’s
attention

Step 2: Make GameOver text appear
We’ve got some beautiful Game Over text on the screen, but it’s just sitting and blocking our
view right now. We should deactivate it, so it can reappear when the game ends.

1. In GameManager.cs, create a new public
TextMeshProUGUI gameOverText; and assign the
Game Over object to it in the inspector

2. Uncheck the Active checkbox to deactivate the
Game Over text by default

3. In Start(), activate the Game Over text

- Don’t worry: We’re just doing this
temporarily to make sure it works

public TextMeshProUGUI gameOverText;

void Start() {
...
gameOverText.gameObject.SetActive(true); }

© Unity 2021 Create with Code - Unit 5

15

Step 3: Create GameOver function
We’ve temporarily made the “Game Over” text appear at the start of the game, but we actually
want to trigger it when one of the “Good” objects is missed and falls.

1. Create a new public void GameOver() function, and move the code
that activates the game over text inside it

2. In Target.cs, call gameManager.GameOver() if a target collides
with the sensor

3. Add a new “Bad” tag to the Bad object, add a condition that will
only trigger game over if it’s not a bad object

void Start() {
... gameOverText.gameObject.SetActive(true); }

public void GameOver() {
gameOverText.gameObject.SetActive(true); }

<------>
private void OnTriggerEnter(Collider other) {

Destroy(gameObject);
if (!gameObject.CompareTag("Bad")) { gameManager.GameOver(); } }

Step 4: Stop spawning and score on GameOver
The “Game Over” message appears exactly when we want it to, but the game itself continues to
play. In order to truly halt the game and call this a “Game Over’, we need to stop spawning
targets and stop generating score for the player.

1. Create a new public bool isGameActive;
2. As the first line In Start(), set isGameActive = true; and in

GameOver(), set isGameActive = false;
3. To prevent spawning, in the SpawnTarget() coroutine, change

while (true) to while (isGameActive)
4. To prevent scoring, in Target.cs, in the OnMouseDown()

function, add the condition if (gameManager.isGameActive) {

public bool isGameActive;

void Start() { ... isGameActive = true; }

public void GameOver() { ... isGameActive = false; }

IEnumerator SpawnTarget() { while (true isGameActive) { ... }
<------>
private void OnMouseDown() {

if (gameManager.isGameActive) { ... [all function code moved inside] }}

© Unity 2021 Create with Code - Unit 5

16

Step 5: Add a Restart button
Our Game Over mechanics are working like a charm, but there’s no way to replay the game. In
order to let the player restart the game, we will create our first UI button

1. Right-click on the Canvas and Create > UI > Button
Note: You could also use Button - TextMeshPro for more control
over the button’s text.

2. Rename the button “Restart Button”
3. Temporarily reactivate the Game Over text in order to reposition the

Restart Button nicely with the text, then deactivate it again
4. Select the Text child object, then edit its Text to say “Restart”, its

Font, Style, and Size

- New Concept:
Buttons

Step 6: Make the restart button work
We’ve added the Restart button to the scene and it LOOKS good, but now we need to make it
actually work and restart the game.

1. In GameManager.cs, add using
UnityEngine.SceneManagement;

2. Create a new public void RestartGame() function
that reloads the current scene

3. In the Button’s inspector, click + to add a new On
Click event, drag it in the Game Manager object
and select the GameManager.RestartGame
function

- New Concept: Scene Management
- New Concept: On Click Event
- Don’t worry: The restart button is just

sitting there for now, but we will fix it
later

using UnityEngine.SceneManagement;

public void RestartGame() {
SceneManager.LoadScene(SceneManager.GetActiveScene().name); }

© Unity 2021 Create with Code - Unit 5

17

Step 7: Show restart button on game over
The Restart Button looks great, but we don’t want it in our faces throughout the entire game.
Similar to the “Game Over” message, we will turn off the Restart Button while the game is
active.

1. At the top of GameManager.cs add using UnityEngine.UI;
2. Declare a new public Button restartButton; and assign the

Restart Button to it in the inspector
3. Uncheck the “Active” checkbox for the Restart Button in

the inspector
4. In the GameOver function, activate the Restart Button

- Tip: Adding “using
UnityEngine.UI” allows you to
access the Button class

using UnityEngine.UI;

public Button restartButton;

public void GameOver() { ...
restartButton.gameObject.SetActive(true); }

Lesson Recap
New
Functionality

● A functional Game Over screen with a Restart button
● When the Restart button is clicked, the game resets

New Concepts
and Skills

● Game states
● Buttons
● On Click events
● Scene management Library
● UI Library
● Booleans to control game states

Next Lesson ● In our next lesson, we’ll use buttons to really add some difficulty to our
game

© Unity 2021 Create with Code - Unit 5

18

5.4 What’s the Difficulty?

Steps:
Step 1: Create Title text and menu buttons

Step 2: Add a DifficultyButton script

Step 3: Call SetDifficulty on button click

Step 4: Make your buttons start the game

Step 5: Deactivate Title Screen on StartGame

Step 6: Use a parameter to change difficulty

Example of project by end of lesson

Length: 60 minutes

Overview: It’s time for the final lesson! To finish our game, we will add a Menu and Title
Screen of sorts. You will create your own title, and style the text to make it
look nice. You will create three new buttons that set the difficulty of the
game. The higher the difficulty, the faster the targets spawn!

Project
Outcome:

Starting the game will open to a beautiful menu, with the title displayed
prominently and three difficulty buttons resting at the bottom of the screen.
Each difficulty will affect the spawn rate of the targets, increasing the skill
required to stop “good” targets from falling.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Store UI elements in a parent object to create Menus, UI, or HUD
- Add listeners to detect when a UI Button has been clicked
- Set difficulty by passing parameters into game functions like SpawnRate

© Unity 2021 Create with Code - Unit 5

https://docs.google.com/document/d/1lcT8pI28zC14zcUxbdFfwSk_F5EM4bgL5x7TFENkCZg/edit#heading=h.4uqbkjeyz8n7
https://docs.google.com/document/d/1lcT8pI28zC14zcUxbdFfwSk_F5EM4bgL5x7TFENkCZg/edit#heading=h.jpvf7062snkj

19

Step 1: Create Title text and menu buttons
The first thing we should do is create all of the UI elements we’re going to need. This includes a
big title, as well as three difficulty buttons.
1. Duplicate your Game Over text to create your Title

Text, editing its name, text and all of its attributes
2. Duplicate your Restart Button and edit its

attributes to create an “Easy Button” button
3. Edit and duplicate the new Easy button to create

a“Medium Button” and a “Hard Button”

- Tip: You can position the title and
buttons however you want, but you
should try to keep them central and
visible to the player

Step 2: Add a DifficultyButton script
Our difficulty buttons look great, but they don’t actually do anything. If they’re going to have
custom functionality, we first need to give them a new script.

1. For all 3 new buttons, in the Button component, in the On Click ()
section, click the minus (-) button to remove the RestartGame
functionality

2. Create a new DifficultyButton.cs script and attach it to all 3
buttons

3. Add using UnityEngine.UI to your imports
4. Create a new private Button button; variable and initialize it in

Start()

using UnityEngine.UI;

private Button button;

void Start() {
button = GetComponent<Button>(); }

© Unity 2021 Create with Code - Unit 5

20

Step 3: Call SetDifficulty on button click
Now that we have a script for our buttons, we can create a SetDifficulty method and tie that
method to the click of those buttons

1. Create a new void SetDifficulty function, and
inside it, Debug.Log(gameObject.name + " was
clicked");

2. Add the button listener to call the SetDifficulty
function

- New Function: AddListener
- Don’t worry: onClick.AddListener is

similar what we did in the inspector
with the Restart button

- Don’t worry: We’re just using Debug for
testing, to make sure the buttons are
working

void Start() {
button = GetComponent<Button>();
button.onClick.AddListener(SetDifficulty);

}

void SetDifficulty() {
Debug.Log(gameObject.name + " was clicked");

}

© Unity 2021 Create with Code - Unit 5

21

Step 4: Make your buttons start the game
The Title Screen looks great if you ignore the target objects bouncing around, but we have no
way of actually starting the game. We need a StartGame function that can communicate with
SetDifficulty.

1. In GameManager.cs, create a new public void StartGame()
function and move everything from Start() into it

2. In DifficultyButton.cs, create a new private GameManager
gameManager; and initialize it in Start()

3. In the SetDifficulty() function, call gameManager.startGame();

- Don’t worry: Title objects
don’t disappear yet - we’ll
do that next

GameManager.cs

void Start() { ... }

public void StartGame() {
isGameActive = true;
score = 0;
StartCoroutine(SpawnTarget());
UpdateScore(0);

}

DifficultyButton.cs

private GameManager gameManager;

void Start () {
...
gameManager = GameObject.Find("Game Manager").GetComponent<GameManager>();
}

void SetDifficulty() {
...
gameManager.StartGame();
}

© Unity 2021 Create with Code - Unit 5

22

Step 5: Deactivate Title Screen on StartGame
If we want the title screen to disappear when the game starts, we should store them in an
empty object rather than turning them off individually. Simply deactivating the single empty
parent object makes for a lot less work.

1. Right-click on the Canvas and Create > Empty Object, rename it “Title
Screen”, and drag the 3 buttons and title onto it

2. In GameManager.cs, create a new public GameObject titleScreen; and
assign it in the inspector

3. In StartGame(), deactivate the title screen object

public GameObject titleScreen;

StartGame() {
... titleScreen.gameObject.SetActive(false); }

Step 6: Use a parameter to change difficulty
The difficulty buttons start the game, but they still don’t change the game’s difficulty. The last
thing we have to do is actually make the difficulty buttons affect the rate that target objects
spawn.

1. In DifficultyButton.cs, create a new public int difficulty variable, then
in the Inspector, assign the Easy difficulty as 1, Medium as 2, and
Hard as 3

2. Add an int difficulty parameter to the StartGame() function
3. In StartGame(), set spawnRate /= difficulty;
4. Fix the error in DifficultyButton.cs by passing the difficulty parameter

to StartGame(difficulty)

- New Concept:
/= operator

public int difficulty;

void SetDifficulty() {
... gameManager.startGame(difficulty); }

<------>
public void StartGame(int difficulty) {

spawnRate /= difficulty; }

© Unity 2021 Create with Code - Unit 5

23

Lesson Recap
New
Functionality

● Title screen that lets the user start the game
● Difficulty selection that affects spawn rate

New Concepts
and Skills

● AddListener()
● Passing parameters between scripts
● Divide/Assign (/=) operator
● Grouping child objects

© Unity 2021 Create with Code - Unit 5

24

Challenge 5
Whack-a-Food

Challenge
Overview:

Put your User Interface skills to the test with this whack-a-mole-like challenge
in which you have to get all the food that pops up on a grid while avoiding the
skulls. You will have to debug buttons, mouse clicks, score tracking, restart
sequences, and difficulty setting to get to the bottom of this one.

Challenge
Outcome:

- All of the buttons look nice with their text properly aligned
- When you select a difficulty, the spawn rate changes accordingly
- When you click a food, it is destroyed and the score is updated in the

top-left
- When you lose the game, a restart button appears that lets you play again

Challenge
Objectives:

In this challenge, you will reinforce the following skills/concepts:
- Working with text and button objects to get them looking the way you want
- Using Unity’s various mouse-related methods appropriately
- Displaying variables on text objects properly using concatenation
- Activating and deactivating objects based on game states
- Passing information between scripts using custom methods and

parameters

Challenge
Instructions:

- Open your Prototype 5 project
- Download the "Challenge 5 Starter Files" from the Tutorial Materials section,

then double-click on it to Import
- In the Project Window > Assets > Challenge 5 > Instructions folder, use the

"Challenge 5 - Outcome” video as a guide to complete the challenge

© Unity 2021 Create with Code - Unit 5

25

Challenge Task Hint

1 The difficulty buttons
look messy

Center the text on the buttons
horizontally and vertically

If you expand one of the button
objects in the hierarchy, you’ll see a
“Text” object inside - you have to edit
the properties of that “Text” object

2 The food is being
destroyed too soon

The food should only be
destroyed when the player
clicks on it, not when the
mouse touches it

OnMouseEnter() detects when the
mouse enters an object’s collider -
OnMouseDown() detects when the
mouse clicks on an object’s collider

3 The Score is being
replaced by the word
“score”

It should always say,
“Score: __“ with the value
displayed after “Score:”

When you set the score text, you have
to add (concatenate) the word
“Score: “ and the actual score value

4 When you lose, there’s
no way to Restart

Make the Restart button
appear on the game over
screen

In the GameOver() method, make
sure the restart button is being
reactivated

5 The difficulty buttons
don’t change the
difficulty

The spawnRate is always
way too fast. When you click
Easy, the spawnRate should
be slower - if you click Hard,
the spawnRate should be
faster.

There is no information (or
parameter) being passed from the
buttons’ script to the Game
Manager’s script - you need to
implement a difficulty parameter

Bonus Challenge Task Hint

X The game can go on
forever

Add a “Time: __” display that
counts down from 60 in
whole numbers (i.e. 59, 58,
57, etc) and triggers the
game over sequence when it
reaches 0.

Google, “Unity Count down timer C#”.
It will involve subtracting
“Time.deltaTime” and using the
Mathf.Round() method to display only
whole numbers.

© Unity 2021 Create with Code - Unit 5

26

Challenge Solution

1 Expand each of the “Easy”, “Medium”, and “Hard” buttons to access their “Text” object
properties, then select the horizontal and vertical alignment buttons in the “Paragraph”
properties

2 In TargetX.cs, change OnMouseEnter() to OnMouseDown()

private void OnMouseEnter Down() {

3 In GameManagerX.cs, in UpdateScore(), concatenate the word “Score: “ with the score
value:

public void UpdateScore(int scoreToAdd) {

score += scoreToAdd;

scoreText.text = "score" "Score: " + score;

}

4 In GameManagerX.cs, in GameOver(), change SetActive(false) to “true”

public void GameOver() {

gameOverText.gameObject.SetActive(true);

restartButton.gameObject.SetActive(false true);

...

}

5 In GameManagerX.cs, in StartGame(), add an “int difficulty” parameter and divide the
spawnRate by it. Then in DifficultyButtonX.cs, in SetDifficulty(), pass in the “difficulty”
value from the buttons.

GameManagerX.cs
public void StartGame(int difficulty){

spawnRate /= 5 difficulty;

...

}

DifficultyButtonX.cs
void SetDifficulty() {

...

gameManagerX.StartGame(difficulty);

}

© Unity 2021 Create with Code - Unit 5

27

Bonus Challenge Solution

X1 Duplicate the “Score Text” object in the hierarchy to create a new “Timer text” object, then in
GameManagerX.cs declare a new TextMeshProUGUI timerText variable and assign it in the
inspector

X2 In GameManagerX.cs, in StartGame(), set your new timerText variable to your starting time

public void StartGame(int difficulty) {

...

timeLeft = 60;

}

X3 In GameManagerX.cs, add an Update() function that, if the game is active, subtracts from the
timeLeft and sets the timerText to a rounded version of that timeLeft. Then, if timeLeft is less
than zero, calls the game over method.

private void Update() {

if (isGameActive) {

timeLeft -= Time.deltaTime;

timerText.SetText("Time: " + Mathf.Round(timeLeft));

if (timeLeft < 0) {

GameOver();

}

}

}

© Unity 2021 Create with Code - Unit 5

28

Unit 5 Lab
Swap out your Assets
Steps:
Step 1: Import and browse the asset library

Step 2: Replace player with new asset

Step 3: Browse the Asset store

Step 4: Replace all non-player primitives

Step 5: Replace the background texture

Example of progress by end of lab

Length: 90 minutes

Overview: In this lab, you will finally replace those boring primitive objects with beautiful
dynamic ones. You will either use assets from the provided course library or
browse the asset store for completely new ones to give your game exactly
the look and feel that you want. Then, you will go through the process of
actually swapping in those new assets in the place of your placeholder
primitives. By the end of this lab, your project will be looking a lot better.

Project
Outcome:

All primitive objects are replaced by actual 3D models, retaining the same
basic gameplay functionality.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Browse the asset store to find the perfect assets for your project
- Use Nested Prefabs to swap out placeholder objects with real assets
- Adjust material settings to get the resolution and look you want

© Unity 2021 Create with Code - Unit 5

29

Step 1: Import and browse the asset library
If we are going to swap out our primitive shapes with cool new assets, we need to import those
assets first.

1. Click to download the Course Library assets,
extract the compressed folder, and then import
the .unitypackage into your project.
If you forget how to do this, refer to Lesson 1.1,
step 2.

2. Browse through the library to find the assets you
would like to replace your Player and non-player
objects with

- Don’t worry: It will take longer than
normal to import these files because it’s
a lot more files

- Don’t worry: Even if you don’t think you’re
going to use one of these assets for your
player, just choose something for now to
get used to the process

Step 2: Replace player with new asset
Now that we have the assets ready to go, the first thing we’ll do is replace the Player object
1. Drag the Player object into the “Prefabs” folder to make it

a prefab, then double-click on it to open the prefab editor
2. Drag the asset you want into the hierarchy to make it a

nested prefab of the Player, then scale and position it so
that it is around the same size and location

3. On the parent Player object itself, either Edit the collider to
be the size of the new asset or replace it with a different
type of collider (e.g. Box)

4. Test testing to make sure it works, then uncheck the
Mesh Renderer component of the primitive

- New: Nested Prefabs
- Tip: Notice how the asset

updates automatically in game
view

- Tip: Isometric view is useful
when resizing and
repositioning child objects

© Unity 2021 Create with Code - Unit 5

https://connect-prd-cdn.unity.com/20210506/f5f470b5-a319-426b-b459-1033840b49ca/Create%20with%20Code%20-%20Course%20Library.zip?_ga=2.19325944.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

30

Step 3: Browse the Asset store
Even though we have a really great asset library, there may be certain assets you want that
aren’t in there. In that case, it might be good to try and find assets in the Unity Asset Store.

1. Click to open the Unity Asset Store
2. In the search bar, search for “Synty Studios” or “Low

Poly”, then browse some of the assets
3. In the Pricing filter, check “Free Assets” to only view

free options, or use the Ratings filter to only see
highly reviewed assets.

4. If you find an asset you want to include in your
project, select Add to My Assets, then Open in Unity.
This should automatically open the Package
Manager window in Unity.

5. In the top-left corner of the Package Manager, use
the drop-down to view Packages: My Assets, then
locate your new asset in the list and click Download,
then Import.

6. Drag the imported assets into a new folder called
“Asset Store”, then browse through the imported
assets.

- Warning: This will only be possible if
you can sign into a Unity account

- Explain: The assets for this course
were made by Synty Studios, which
are really good - as you can see, you
normally have to pay for them

- New: Unity Asset Store
- New: “Low Poly” assets
- Warning: Only download “Low Poly”

assets or your project will become
huge, then not web- or
mobile-friendly

- Don’t worry: Even if you think you
have all the assets you need, it’s still
good to take a look

Step 4: Replace all non-player primitives
Now that we know the basic concept of our project, let’s figure out how we’ll get it done.

1. Repeat the process you used to replace the player
prefab with your other non-player objects

2. Test to make sure everything is working as expected

- Warning: Make sure that, if you are
editing prefabs in the scene, to
Override any changes you make

© Unity 2021 Create with Code - Unit 5

https://assetstore.unity.com/

31

Step 5: Replace the background texture
Now that our dynamic objects have a new look, we should update the ground / background too.

1. From the Course Library > Textures, (or from a Unity
Asset Store package), drag a new material onto the
Ground / Background object

2. To adjust the material’s resolution, in the Material
properties (with the sphere next to it), change the
Main Map Tiling X and Y values

3. To make the material less shiny, in the Material
properties, uncheck the “Specular highlights” and
“Reflections” settings

- Tip: You might want to adjust the
resolution/tiling of the material,
depending on the scale of the
objects

- Tip: Natural ground materials like
grass or dirt do not tend to show
highlights or reflections

Lesson Recap
New Progress ● Primitive objects replaced with new assets that function the same way

New Concepts
and Skills

● Art workflow
● High vs. Low Poly
● Asset Store
● Nested Prefabs
● Material properties

© Unity 2021 Create with Code - Unit 5

32

Quiz Unit 5
QUESTION CHOICES

1 Which of the following follows Unity naming conventions
(especially as they relate to capitalization)?

a. Line 1
b. Line 2
c. Line 3
d. Line 41. public void MultiplyScore(int currentScore) { }

2. public void multiplyScore(int CurrentScore) { }

3. public Void MultiplyScore(Int currentScore) { }

4. public Void MultiplyScore(int CurrentScore) { }

2 If there is a boolean in script A that you want to access
in script B, which of the following are true:

a. 1 only
b. 1 and 2 only
c. 2 and 3 only
d. 3 and 4 only
e. 1, 2, and 3 only
f. All are true

1. You need a reference to script A in script B
2. The boolean needs to be public instead of private
3. The boolean must be true
4. The boolean must be included in the Update method

3 Which code to fill in the blank will result in the object
being destroyed?

a. name = “player” &&
isDead && health < 5

b. name != “player”
&& isDead != true && health > 5

c. name == “player” && !isDead
&& health < 5

d. name == “player” && isDead !=
true && health > 5

string name = “player”
bool isDead;
float health = 3;

if (________________) {
Destroy(gameObject);

}

© Unity 2021 Create with Code - Unit 5

33

4 You run your game and get the following error message
in the console, “NullReferenceException: Object
reference not set to an instance of an object”. Given the
image and code below, what would resolve the problem?

a. In the hierarchy, rename “Game
Manager” to “gameManager”

b. In the hierarchy, rename “Game
Manager” as “GameManager”

c. On Line 1, rename
“GameManager” as “Game
Manager”

d. On Line 3, remove the
GetComponent code

1. private GameManager gameManager;
2. void Start() {
3. gameManager = GameObject.Find("GameManager").GetComponent<GameManager>();
4. }

5 Read the Unity documentation below about the
OnMouseDrag event and the code beneath it. What will
the value of the “counter” variable be if the user clicked
and held down the mouse over an object with a collider
for 10 seconds?

a. 0
b. 1
c. 99
d. 100
e. A value over 100

int counter = 0;

void OnMouseDrag() {

if (counter < 100) {

counter++;

}

}

© Unity 2021 Create with Code - Unit 5

34

6 Based on the code below, what will be displayed in the
console when the button is clicked?

a. “Welcome, Robert Smith”
b. “Welcome, firstName Smith”
c. “Button is ready”
d. “Welcome + Robert + Smith”

private Button button;
private string firstName = "Robert";

void Start() {
button = GetComponent<Button>();
button.onClick.AddListener(DisplayWelcomeMessage);
Debug.Log("Button is ready");

}

void DisplayWelcomeMessage() {
Debug.Log("Welcome, " + "firstName" + " Smith");

}

7 You have declared a new Button variable as “private
Button start;”, but there’s an error under the word
“Button” that says “error CS0246: The type or
namespace name 'Button' could not be found (are you
missing a using directive or an assembly reference?)”
What is likely causing that error?

a. You can’t name a button “start”
because that’s the name of a
Unity Event Function

b. “Button” should be lowercase
“button”

c. You are missing “using
UnityEngine.UI;” from the top of
your class

d. New Button variables must be
made public

8 Look at the documentation and code below. Which of
the following lines would NOT produce an error?

a. Line 5
b. Line 6
c. Line 7
d. Line 8

© Unity 2021 Create with Code - Unit 5

35

1. public Vector3 explosion;

2. Vector3 startPos;

3. float startSpeed;

4. void Start {

5. AddForceAtPosition(50, 0, ForceMode.Impulse)

6. AddForceAtPosition(100, startPos, ForceMode.Impulse)

7. AddForceAtPosition(startSpeed, startPos, ForceMode.Impulse)

8. AddForceAtPosition(explosion, new Vector3(0, 0, 0), ForceMode.Impulse)

9. }

9 If you wanted a button to display the message, “Hello!”
when a button was clicked, what code would you use to
fill in the blank?

a. (SendMessage);
b. (SendMessage(“Hello”));
c. (SendMessage(string Hello));
d. (SendMessage(Hello));

private Button button;

void Start {

button = GetComponent<Button>();

button.onClick.AddListener________________;

}

void SendMessage() {

Debug.Log(”Hello!”);

}

10 Which of the following is the correct way to declare a
new List of game objects named “enemies”?

a. Line 1
b. Line 2
c. Line 3
d. Line 41. public List[GameObjects] enemies;

2. public List(GameObject) "enemies";

3. public List<GameObjects> "enemies";

4. public List<GameObject> enemies;

© Unity 2021 Create with Code - Unit 5

36

Quiz Answer Key
ANSWER EXPLANATION

1 A public void MultiplyScore(int currentScore)
The “public”, “void”, and “int” keywords should be lowercase. Method names
(like “MultiplyScore”) should be Title Case. variable names (like
“currentScore”) should be camelCase.

2 B You always need a variable reference to the script you’re trying to access and
that variable must be public.

3 C To compare a string, two ==’s are needed. By default, booleans are false
unless declared as true and adding an exclamation mark before !isDead
checks that it’s false. Since health = 3, checking “health < 5” is true.

4 B GameObject.Find("GameManager") is returning a NullReferenceException
error because there’s no object in the scene named that. If you renamed the
“Game Manager” in the hierarchy to have no spaces, it would be fixed.

5 D Since the function is called “every frame” the mouse is held, it will be called
hundreds of times in 10 seconds. However, the condition will only be true if
the counter is less than 99, meaning it will no longer increase after 100.

6 B If you wanted it to say “Robert Smith”, you would have needed to use the
variable name, firstName, without quotation marks.

7 C In order to use some of the UI classes like “Button,” you need to include the
“UnityEngine.UI” library

8 D The first two required parameters are Vector3 variables. Only option D uses
Vector3 variables for those parameters.

9 A SendMessage does not require any parameters - it prints “Hello” no matter
what when it is called. Also, when adding a listener, you just need to include
the method’s name - no parentheses are required.

10 D public List<GameObject> enemies is correct. <GameObject> should be in
angle brackets. You don’t need “GameObject” to be plural because it’s the
type of object it is. Variable names are never declared with quotation marks
around them.

© Unity 2021 Create with Code - Unit 5

37

Bonus Features 5 - Share your Work

Steps:
Step 1: Overview

Step 2: Easy: Obstacle pyramids

Step 3: Medium: Oncoming vehicles

Step 5: Hard: Camera switcher

Step 6: Expert: Local multiplayer

Step 7: Hints and solution walkthrough

Step 8: Share your work

Length: 60 minutes

Overview: In this tutorial, you can go way above and beyond what you learned in this
Unit and share what you’ve made with your fellow creators.

There are four bonus features presented in this tutorial marked as Easy,
Medium, Hard, and Expert. You can attempt any number of these, put your
own spin on them, and then share your work!

This tutorial is entirely optional, but highly recommended for anyone wishing
to take their skills to a new level.

© Unity 2021 Create with Code - Unit 5

38

Step 1: Overview
This tutorial outlines four potential bonus features for the Quick Click Prototype at varying levels of
difficulty:

● Easy: Lives UI
● Medium: Music volume
● Hard: Pause menu
● Expert: Click-and-swipe

Here’s what the prototype could look like if you complete all four features:

The Easy and Medium features can probably be completed entirely with skills from this course, but
the Hard and Expert features will require some additional research.

Since this is optional, you can attempt none of them, all of them, or any combination in between.
You can come up with your own original bonus features as well!

Then, at the end of this tutorial, there is an opportunity to share your work.

We highly recommend that you attempt these using relentless Googling and troubleshooting, but if
you do get completely stuck, there are hints and step-by-step solutions available below.

Good luck!

© Unity 2021 Create with Code - Unit 5

39

Step 2: Easy: Lives UI
Create a "Lives" UI element that counts down by 1 when an object leaves the bottom of the screen
and triggers Game Over when Lives reaches 0.

Step 3: Medium: Music volume
Add background music and a UI Slider element to adjust the volume.
Background music adds a lot of energy to a game, but not everyone likes it, so it’s good to give
people the option to lower the volume.

© Unity 2021 Create with Code - Unit 5

40

Step 5: Hard: Pause menu
During gameplay, allow the user to press a key to toggle between pausing and resuming the game,
where a pause screen comes up while the game is paused.

Step 6: Expert: Click-and-swipe
Program click-and-swipe functionality instead of clicking, generating a trail where the mouse has
been dragged. This does make the game easier, so you might also want to increase the gameplay
difficulty on all levels if you implement this.

© Unity 2021 Create with Code - Unit 5

41

Step 7: Hints and solution walkthrough
Hints:

● Easy: Lives UI
○ Try using a Text GameObject like we did for the score

● Medium: Music volume
○ Try using the event on the Slider element

● Hard: Pause menu
○ Try using Time.timeScale

● Expert: Click-and-swipe
○ Camera.ScreenToWorldPoint will help convert a screen space position to world

position

Solution walkthrough
If you are really stuck, download the step-by-step solution walkthrough.
Note that there are likely many ways to implement these features - this is only one suggestion.

Step 8: Share your work
Have you implemented any of these bonus features? Have you added any new, unique features?
Have you applied these new features to another project?

We would love to see what you've created!

Please take a screenshot of your project or do a screen-recording walking us through it, then post
it here to share what you’ve made.

We highly recommend that you comment on at least one other creator's submission. What do you
like about the project? What would be a cool new feature they might consider adding?

© Unity 2021 Create with Code - Unit 5

https://connect-prd-cdn.unity.com/20210505/3181b77f-2009-4506-ae6b-10beabc23d3c/Unit%205%20-%20Bonus%20Features%20and%20Solution.pdf?_ga=2.259926218.1186801097.1620052249-59568313.1601905412

