Create with Code

Unit 5 Lesson Plans

© Unity 2021 Create with Code - Unit 5

& unity

5.1 Clicky Mouse

Steps:
Step 1: Create project and switch to 2D view Example of project by end of lesson

Step 2: Create good and bad targets

Step 3: Toss objects randomly in the air
Step 4: Replace messy code with new methods

Step 5: Create object list in Game Manager

Step 6: Create a coroutine to spawn objects

Step 7: Destroy target with click and sensor

Length: 60 minutes

Overview: It's time for the final unit! We will start off by creating a new project and
importing the starter files, then switching the game’s view to 2D. Next we will
make a list of target objects for the player to click on: Three “good” objects
and one “bad”. The targets will launch spinning into the air after spawning at
a random position at the bottom of the map. Lastly, we will allow the player
to destroy them with a click!

Project A list of three good target objects and one bad target object will spawn in a

Outcome: random position at the bottom of the screen, thrusting themselves into the
air with random force and torque. These targets will be destroyed when the
player clicks on them or they fall out of bounds.

Learning By the end of this lesson, you will be able to:
Objectives: - Switch the game to 2D view for a different perspective
- Add torque to the force of an object
- Create a Game Manager object that controls game states as well as
spawning
Create a List of objects and return their length with Count
Use While Loops to repeat code while something is true
Use OnMouseDown to enable the player to click on things

© Unity 2021 Create with Code - Unit 5

https://docs.google.com/document/d/1HwgdyXB3pYrdhD9Vcscy--fVhpSHGjNhD7Bc2hhPMXs/edit#heading=h.t9imqyt6oys1
https://docs.google.com/document/d/1HwgdyXB3pYrdhD9Vcscy--fVhpSHGjNhD7Bc2hhPMXs/edit#heading=h.gwojefu70x76

Step 1: Create project and switch to 2D view

One last time... we need to create a new project and download the starter files to get things up
and running.

1. Open Unity Hub and create an empty “Prototype 5° - New Concept: 2D View
project in your course directory on the correct - Demo: Notice in 2D view: You can't
Unity version. rotate around objects or move them in

If you forget how to do this, refer to the the Z direction
instructions in Lesson 1.1 - Step 1

2. Click to download the Prototype 5 Starter Files,
extract the compressed folder, and then import the
.unitypackage into your project.
If you forget how to do this, refer to the
instructions in Lesson 1.1 - Step 2

3. Open the Prototype 5 scene, then delete the
sample scene without saving

4. Click on the 2D icon in Scene view to put Scene
view in 2D

5. (optional) Change the texture and color of the
background and the color of the borders

FIEIEIES { o8 Pivot | @Gilobal |
‘Scene | # Animate

| Shaded | v | Gizmes = | (arAll

© Unity 2021 Create with Code - Unit 5

https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cb7a1acedbc2a10b7261d15
https://connect-prd-cdn.unity.com/20210507/c7c2c2ce-f2f4-492e-819c-58096e11ab9f/Prototype%205%20-%20Starter%20Files.zip?_ga=2.33909089.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

Step 2: Create good and bad targets

The first thing we need in our game are three good objects to collect, and one bad object to
avoid. It'll be up to you to decide what's good and what’s bad.

1. From the Library, drag 3 “good” objects and 1 “bad” - Tip: The bigger the collider
object into the Scene, rename them “Good 1", “Good 2", boxes, the easier it will be to hit
“Good 3", and “Bad 1" them

2. Add Rigid Body and Box Collider components, then make ~ T'P: Try selecting multiple
objects and applying

sure that Colliders surround objects properly scripts/components - very
3. Create a new Scripts folder, a new “Target.cs” script handy

inside it, attach it to the Target objects
4. Drag all 4 targets into the Prefabs folder to create

“original prefabs”, then delete them from the scene

v € Prototype 5*
MairG

:

Pirecwormat-tigh
Background
Border

Sensor

W e

B . =

Step 3: Toss objects randomly in the air

Now that we have 4 target prefabs with the same script, we need to toss them into the air with a
random force, torque, and position.

1. In Target.cs, declare a new private Rigidbody - New Function: AddTorque

targetRb; and initialize it in Start() - Tip: Test with different values by
2. In Start(), add an upward force multiplied by a dragging them in during runtime

. - Don't worry: We're going to fix all these
randomized speed
) . hard-coded values next

3. Add a torque with randomized xyz values
4. Set the position with a randomized X value

private Rigidbody targetRb;

void Start() {
targetRb = GetComponent<Rigidbody>();
targetRb.AddForce(Vector3.up * Random.Range(12, 16), ForceMode.Impulse);
targetRb.AddTorque(Random.Range(-10, 10), Random.Range(-10, 10),
Random.Range(-10, 10), ForceMode.Impulse);
transform.position = new Vector3(Random.Range(-4, 4), -6); }

© Unity 2021 Create with Code - Unit 5

Step 4: Replace messy code with new methods

Instead of leaving the random force, torque, and position making our Start() function messy and
unreadable, we're going to store each of them in brand new clearly named custom methods.

1. Declare and initialize new private float variables for minSpeed,
maxSpeed, maxTorque, xRange, and ySpawnPos;

2. Create a new function for Vector3 RandomForce() and call it in Start()

3. Create a new function for float RandomTorque() and call it in Start()

4. Create a new function for RandomSpawnPos(), have it return a new
Vector3 and call it in Start()

private float minSpeed = 12;
private float maxSpeed = 16;
private float maxTorque = 10;
private float xRange = 4;
private float ySpawnPos = -6;

void Start() {

targetRb.AddForce (== RandomForce(), ForceMode.Impulse);

targetRb.AddTorque (=== RandomTorque(), RandomTorque(), RandomTorque(),
ForceMode.Impulse);

transform.position = === RandomSpawnPos();

}

Vector3 RandomForce() {
return Vector3.up * Random.Range(minSpeed, maxSpeed);

}
float RandomTorque() {

return Random.Range(-maxTorque, maxTorque);

}
Vector3 RandomSpawnPos() {

return new Vector3(Random.Range(-xRange, xRange), ySpawnPos);

}

© Unity 2021 Create with Code - Unit 5

Step 5: Create object list in Game Manager

The next thing we should do is create a list for these objects to spawn from. Instead of making

a Spawn Manager for these spawn functions, we're going to make a Game Manager that will
also control game states later on.

1. Create a new “Game Manager” Empty object, - New Concept: Lists
attach a new GameManager.cs script, then openit - New Concept: Game Manager
2. Declare a new public List<GameObject> targets;, - Demo: Feel free to reference old code:

We used an array instead of a list to

then in the Game Manager inspector, change the spawn the animals in Unit 2

list Size to 4 and assign your prefabs

Directional Light ¥ .. Transform "R
Background Position X|0.08718565 | Y -0.3413807 | Z|2.250077
» | /Border Rotation X0 Y 0 Z0
) Sensor Scale X[1 Y[1 z[1
L 5 -
¥ ¥ Game Manager (Script) Qe
Script GameManage c

v Target Prefabs
Size [4 |
Element 0 sBad 1
Element 1 »Good 1
Element 2 »Good 2
Element 3 »# Good 3

1 Add Component

@ Project -
Create ~ 4%
v . Favorites Assets Prefabs
All Materials #Bad 1
All Models # Good 1
All Prefabs # Good 2
Good 3

4
[}

¥ L Assets

Step 6: Create a coroutine to spawn objects

Now that we have a list of object prefabs, we should instantiate them in the game using
coroutines and a new type of loop.

1. Declare and initialize a new private float spawnRate - Tip: Feel free to reference old code:
variable we used coroutines for the

2. Create a new IEnumerator SpawnTarget () method _FID_?Vf’irUp cooldown in Unit4]

3. Inside the new method, while(true), wait 1 second, - Tip: Arrays return an integer wit

.Length, while Lists return an
integer with .Count
- New Concept: While Loops

generate a random index, and spawn a random target
4. In Start(), use the StartCoroutine method to begin
spawning objects

private float spawnRate = 1.0f;
void Start() { StartCoroutine(SpawnTarget()); }

IEnumerator SpawnTarget() {
while (true) {
yield return new WaitForSeconds(spawnRate);
int index = Random.Range(@, targets.Count);
Instantiate(targets[index]); } }

© Unity 2021 Create with Code - Unit 5

Step 7: Destroy target with click and sensor

Now that our targets are spawning and getting tossed into the air, we need a way for the player
to destroy them with a click. We also need to destroy any targets that fall below the screen.

1. In Target.cs, add a new method for private void - New Function: OnMouseDown

OnMouseDown() {} , and inside that method, - Tip: There is also OnMouseUp, and
destroy the gameObject OnMouseEnter, but Down is definitely

2. Add a new method for private void the ane we want

- Tip: You could use Update and check if
OnTriggerEnter(Collider other) and inside that tafget y position is IoF\)Ner than a certain

function, destroy the gameObject value, but a sensor is better because it
doesn't run all the time

private void OnMouseDown() {
Destroy(gameObject); }

private void OnTriggerEnter(Collider other) {
Destroy(gameObject); }

Lesson Recap

New e Random objects are tossed into the air on intervals
Functionality Objects are given random speed, position, and torque
If you click on an object, it is destroyed

2D View
AddTorque
Game Manager
Lists

While Loops
Mouse Events

New Concepts
and Skills

Next Lesson e WEe'll add some effects and keep track of score!

© Unity 2021 Create with Code - Unit 5

& unity

5.2 Keeping Score

Steps:

Step 1: Add Score text position it on screen Example of project by end of lesson
|

(&

Step 2: Edit the Score Text’s properties

Step 3: Initialize score text and variable

Step 4: Create a new UpdateScore method

Step 5: Add score when targets are destroyed

Step 6: Assign a point value to each target

=

Step 7: Add a Particle explosion

Length: 60 minutes

Overview: Objects fly into the scene and the player can click to destroy them, but
nothing happens. In this lesson, we will display a score in the user interface
that tracks and displays the player’s points. We will give each target object a
different point value, adding or subtracting points on click. Lastly, we will add
cool explosions when each target is destroyed.

Project A “Score: “ section will display in the Ul, starting at zero. When the player

Outcome: clicks a target, the score will update and particles will explode as the target
is destroyed. Each “Good” target adds a different point value to the score,
while the “Bad” target subtracts from the score.

Learning By the end of this lesson, you will be able to:
Objectives: - Create Ul Elements in the Canvas
- Lock elements and objects into place with Anchors
- Use variables and script communication to update elements in the Ul

© Unity 2021 Create with Code - Unit 5

https://docs.google.com/document/d/1NEzZB8uVjvU-m1LICTPvltqaXiHIYTicPj7ct2cqiVo/edit#heading=h.t9imqyt6oys1

Step 1: Add Score text position it on screen

In order to display the score on-screen, we need to add our very first Ul element.

1. In the Hierarchy, Create > Ul > TextMeshPro text,
then if prompted click the button to Import TMP

Essentials

2. Rename the new object “Score Text”, then zoom

out to see the canvas in Scene view

3. Change the Anchor Point so that it is anchored

from the top-left corner
4. In the inspector, change its Pos X and Pos Y so
that it is in the top-left corner

File Edit Assets GameObject Component Window Help

(O B S [155) (e pwot [@clobal]

"Scene | #8 Animator

Shaded

20 || ¥ | <)

- New Concept: Text Mesh Pro / TMPro
- New Concept: Canvas

- New Concept: Anchor Points

- Tip: Look at how it displays in scene
vs game view. It may be hard to see

white text depending on the

I

#=| = Hierarchy

Create ~ | (GrAll
v € Prototype 5*
~ [_IMain Camera
|/ Directional Light
| Background
» | /Border
I Sensor

. Game Manager.
| v Jcanvas |
® Score Text
T TEventSystem

J & Project |
—

Step 2: Edit the Score Text's properties
Now that the basic text is in the scene and positioned properly, we should edit its properties so
that it looks nice and has the correct text.

1. Change its text to “Score:”
2. Choose a Font Asset, Style, Size, and Vertex color
to look good with your background

| = Hierarchy w-=| O Inspector A=
Create v | (@Al - s L= -
v @ Prototype = v I ¥ Text Mesh Pro UGUI (Script) Qe
" IMain Can Select TMP_FontAsset ur Text
(I Direction /= Score:
(_IBackgrot
» (_Border Assets Scene
|_ISensor None Enable RTL Editor (m)

| Game Ma BalooChettan-Regular SDF
v (_canvas ' ExolySemiBold SDF
E IndieFlower SDF
_/EventSys I LiberationSans SDF

@ Project i

Create ~ Q

L 1
v |/ Favorites
L All Materi =
Ol al Madel

© Unity 2021

Main Settings

Font Asset

|I"|BalooChettan-Regular SDF (TMP_Font2 o

Material Preset BalooChettan-Regular SDF Material
Font Style [e [1 [v [s | a [a | sc
Font Size 36 |
Auto Size (|
\Vertex Color [| A
Color Gradient (W)
Override Tags (W}
Spacing Options Character 0 Word 0

Alignment

Line [0

Paragraph 0

background

Create with Code - Unit 5

10
Step 3: Initialize score text and variable

We have a great place to display score in the Ul, but nothing is displaying there! We need the Ul
to display a score variable, so the player can keep track of their points.

1. At the top of GameManager.cs, add “using TMPro;” - New Concept:
2. Declare a new public TextMeshProUGUI scoreText, then assign that Importing Libraries

variable in the inspector

3. Create a new private int score variable and initialize it in Start() as
score = 0;

4. Also in Start(), set scoreText.text = "Score: " + score;

using TMPro;

private int score;
public TextMeshProUGUI scoreText;

void Start() {
StartCoroutine(SpawnTarget());
score = 0;
scoreText.text = "Score:

+ score; }

Step 4: Create a new UpdateScore method

The score text displays the score variable perfectly, but it never gets updated. We need to write
a new function that racks up points to display in the Ul.

1. Create a new private void UpdateScore method that requires - New Concept: Custom
one int scoreToAdd parameter functions requiring
2. Cut and paste scoreText.text = "Score: " + score; into the new parameters

method, then call UpdateScore(0) in Start() i ::;1;";2;22 {:)da%ils?;

3. In UpdateScore(), increment the score by adding score when spawned, this
score += scoreToAdd; is just temporary
4. Call UpdateScore(5) in the spawnTarget() function

void Start() {
. . .Seoretexttext——Scorer——+—sScore:
UpdateScore(9); }

IEnumerator SpawnTarget() {
while (true) { ... UpdateScore(5); }

private void UpdateScore(int scoreToAdd) {
score += scoreToAdd;
scoreText.text = "Score:

+ score; }

© Unity 2021 Create with Code - Unit 5

11
Step 5: Add score when targets are destroyed

Now that we have a method to update the score, we should call it in the target script whenever
a target is destroyed.

1. In GameManager.cs, make the UpdateScore method public - Tip: Feel free to reference old

2. In Target.cs, create a reference to private GameManager code: We‘ use_d SPfip’[_
gameManager; communication in Unit 3 to

e . . . stop the game on GameOver
3. Initialize GameManager in Start() using the Find() method Warning: If you try to call

4. When a target is destroyed, call UpdateScore(5);, then UpdateScore while it's private
delete the method call from SpawnTarget() it won't work

GameManager.cs
IEnumerator SpawnTarget() {

while (true) { ... UpdateSeere{s)rs }

private—public void UpdateScore(int scoreToAdd) { ... }

Target.cs
private GameManager gameManager;

void Start() {
. gameManager = GameObject.Find("Game Manager")
.GetComponent<GameManager>();}

private void OnMouseDown() {
. gameManager.UpdateScore(5); }

Step 6: Assign a point value to each target

The score gets updated when targets are clicked, but we want to give each of the targets a
different value. The good objects should vary in point value, and the bad object should subtract
points.

1. In Target.cs, create a new public int pointValue variable - Tip: Here's the beauty of variables
2. In each of the Target prefab’s inspectors, set the Point at work. Each target .3 can
Value to whatever they’re worth, including the bad have their own unique pointValue!

target’'s negative value
3. Add the new variable to UpdateScore(pointValue);

public int pointValue;
private void OnMouseDown() {

Destroy(gameObject);
gameManager.UpdateScore(5 pointValue); }

© Unity 2021 Create with Code - Unit 5

12

Step 7: Add a Particle explosion

The score is totally functional, but clicking targets is sort of... unsatisfying. To spice things up,
let's add some explosive particles whenever a target gets clicked!

1. In Target.cs, add a new public ParticleSystem explosionParticle

variable

2. For each of your target prefabs, assign a particle prefab from
Course Library > Particles to the Explosion Particle variable
3. In the OnMouseDown() function, instantiate a new explosion

prefab

public ParticleSystem explosionParticle;

private void OnMouseDown() {
Destroy(gameObject);
Instantiate(explosionParticle, transform.position,
explosionParticle.transform.rotation);
gameManager.UpdateScore(pointValue); }

Lesson Recap

New
Functionality

New Concepts
and Skills

Next Lesson

© Unity 2021

There is a Ul element for score on the screen

The player’s score is tracked and displayed by the score text when hit a
target

There are particle explosions when the player gets an object

TextMeshPro

Canvas

Anchor Points

Import Libraries

Custom methods with parameters
Calling methods from other scripts

We'll use some Ul elements again - this time to tell the player the game is
over and reset our game!

Create with Code - Unit 5

13

& unity

53 Game Over

Steps:
Step 1: Create a Game Over text object Example of project by end of lesson

Score: 20

Step 2: Make GameOQver text appear

Step 3: Create GameQver function

Step 4: Stop spawning and score on GameQver
Step 5: Add a Restart button

Step 6: Make the restart button work

Step 7: Show restart button on game over

Length: 60 minutes

Overview: We added a great score counter to the game, but there are plenty of other
game-changing Ul elements that we could add. In this lesson, we will create
some “Game Over” text that displays when a “good” target object drops
below the sensor. During game over, targets will cease to spawn and the
score will be reset. Lastly, we will add a “Restart Game” button that allows
the player to restart the game after they have lost.

Project When a “good” target drops below the sensor at the bottom of the screen, the

Outcome: targets will stop spawning and a “Game Over” message will display across
the screen. Just underneath the “Game Over” message will be a “Reset
Game” button that reboots the game and resets the score, so the player can
enjoy it all over again.

Learning By the end of this lesson, you will be able to:
Objectives: - Make Ul elements appear and disappear with .SetActive
- Use Script Communication and Game states to have a working “Game
Over” screen
- Restart the game using a Ul button and Scene Management

© Unity 2021 Create with Code - Unit 5

https://docs.google.com/document/d/1NgrfvVuD6BbmiY3VF9oNfvPNatNJMZqi-iI4UUe5F3w/edit#heading=h.4uqbkjeyz8n7

14
Step 1: Create a Game Over text object

If we want some “Game Over” text to appear when the game ends, the first thing we'll do is
create and customize a new Ul text element that says “Game Over”.

1. Right-click on the Canvas, create a new Ul > - Tip: The center of the screen is the
TextMeshPro - Text object, and rename it “Game best place for this Game Over
Over Text” message - it grabs the player’s

2. In the inspector, edit its Text, Pos X, Pos Y, Font attention

Asset, Size, Style, Color, and Alignment
3. Set the “Wrapping” setting to “Disabled”

Score:

Game over

Step 2: Make GameOver text appear

We've got some beautiful Game Over text on the screen, but it's just sitting and blocking our
view right now. We should deactivate it, so it can reappear when the game ends.

1. In GameManager.cs, create a new public - Don’t worry: We're just doing this
TextMeshProUGUI gameOverText; and assign the temporarily to make sure it works
Game Over object to it in the inspector

2. Uncheck the Active checkbox to deactivate the
Game Over text by default

3. In Start(), activate the Game Over text

public TextMeshProUGUI gameOverText;
void Start() {

gameOverText.gameObject.SetActive(true); }

© Unity 2021 Create with Code - Unit 5

15
Step 3: Create GameOver function

We've temporarily made the “Game Over” text appear at the start of the game, but we actually
want to trigger it when one of the “Good” objects is missed and falls.

1. Create a new public void GameOver() function, and move the code
that activates the game over text inside it

2. In Target.cs, call gameManager.GameOver() if a target collides
with the sensor

3. Add a new “Bad” tag to the Bad object, add a condition that will
only trigger game over if it's not a bad object

void Start() {

public void GameOver() {
gameOverText.gameObject.SetActive(true); }

private void OnTriggerEnter(Collider other) {
Destroy(gameObject);
if (!gameObject.CompareTag("Bad")) { gameManager.GameOver(); } }

Step 4: Stop spawning and score on GameOver

The “Game Over” message appears exactly when we want it to, but the game itself continues to
play. In order to truly halt the game and call this a “Game Over’, we need to stop spawning
targets and stop generating score for the player.

1. Create a new public bool isGameActive;

2. As the first line In Start(), set isGameActive = true; and in
GameOver(), set isGameActive = false;

3. To prevent spawning, in the SpawnTarget() coroutine, change
while (true) to while (isGameActive)

4. To prevent scoring, in Target.cs, in the OnMouseDown()
function, add the condition if (gameManager.isGameActive) {

public bool isGameActive;

void Start() { ... isGameActive = true; }

public void GameOver() { ... isGameActive = false; }
IEnumerator SpawnTarget() { while (trte isGameActive) { ... }
<------ >

private void OnMouseDown() {
if (gameManager.isGameActive) { ... [all function code moved inside] }}

© Unity 2021 Create with Code - Unit 5

16
Step 5: Add a Restart button

Our Game Over mechanics are working like a charm, but there’s no way to replay the game. In
order to let the player restart the game, we will create our first Ul button

1. Right-click on the Canvas and Create > Ul > Button - New Concept:
Note: You could also use Button - TextMeshPro for more control Buttons
over the button’s text.
2. Rename the button “Restart Button”
3. Temporarily reactivate the Game Over text in order to reposition the
Restart Button nicely with the text, then deactivate it again
4. Select the Text child object, then edit its Text to say “Restart”, its
Font, Style, and Size

Ndely

Step 6: Make the restart button work

We've added the Restart button to the scene and it LOOKS good, but now we need to make it
actually work and restart the game.

1. In GameManager.cs, add using - New Concept: Scene Management
UnityEngine.SceneManagement; - New Concept: On Click Event

2. Create a new public void RestartGame() function ~ - Dontworry: The restart button is just

sitting there for now, but we will fix it

that reloads the current scene later

3. In the Button's inspector, click + to add a new On
Click event, drag it in the Game Manager object
and select the GameManager.RestartGame
function

using UnityEngine.SceneManagement;

public void RestartGame() {
SceneManager.LoadScene(SceneManager.GetActiveScene().name); }

© Unity 2021 Create with Code - Unit 5

17
Step 7: Show restart button on game over

The Restart Button looks great, but we don’t want it in our faces throughout the entire game.
Similar to the “Game Over” message, we will turn off the Restart Button while the game is
active.

1. At the top of GameManager.cs add using UnityEngine.Ul; - Tip: Adding “using
2. Declare a new public Button restartButton; and assign the UnityEngine.Ul" allows you to
Restart Button to it in the inspector access the Button class

3. Uncheck the “Active” checkbox for the Restart Button in
the inspector
4. In the GameOver function, activate the Restart Button

using UnityEngine.UI;
public Button restartButton;

public void GameOver() { ..
restartButton.gameObject.SetActive(true); }

Lesson Recap

New e A functional Game Over screen with a Restart button
Functionality When the Restart button is clicked, the game resets

Game states

Buttons

On Click events

Scene management Library

Ul Library

Booleans to control game states

New Concepts
and Skills

Next Lesson e In our next lesson, we'll use buttons to really add some difficulty to our
game

© Unity 2021 Create with Code - Unit 5

18

& unity

5.4 What's the Difficulty?

Steps:

' Example of project by end of lesson
Step 1: Create Title text and menu buttons

Step 2: Add a DifficultyButton script

Step 3: Call SetDifficulty on button click

Step 4: Make your buttons start the game

Step 5: Deactivate Title Screen on StartGame

Step 6: Use a parameter to change difficulty

Length: 60 minutes

Overview: It's time for the final lesson! To finish our game, we will add a Menu and Title
Screen of sorts. You will create your own title, and style the text to make it
look nice. You will create three new buttons that set the difficulty of the
game. The higher the difficulty, the faster the targets spawn!

Project Starting the game will open to a beautiful menu, with the title displayed

Outcome: prominently and three difficulty buttons resting at the bottom of the screen.
Each difficulty will affect the spawn rate of the targets, increasing the skill
required to stop “good” targets from falling.

Learning By the end of this lesson, you will be able to:
Objectives: - Store Ul elements in a parent object to create Menus, Ul, or HUD
- Add listeners to detect when a Ul Button has been clicked
- Set difficulty by passing parameters into game functions like SpawnRate

© Unity 2021 Create with Code - Unit 5

https://docs.google.com/document/d/1lcT8pI28zC14zcUxbdFfwSk_F5EM4bgL5x7TFENkCZg/edit#heading=h.4uqbkjeyz8n7
https://docs.google.com/document/d/1lcT8pI28zC14zcUxbdFfwSk_F5EM4bgL5x7TFENkCZg/edit#heading=h.jpvf7062snkj

19

Step 1: Create Title text and menu buttons

The first thing we should do is create all of the Ul elements we're going to need. This includes a
big title, as well as three difficulty buttons.

1. Duplicate your Game Over text to create your Title - Tip: You can position the title and
Text, editing its name, text and all of its attributes buttons however you want, but you

2. Duplicate your Restart Button and edit its should try to keep them central and
attributes to create an “Easy Button” button visible to the player

3. Edit and duplicate the new Easy button to create
a“Medium Button” and a “Hard Button”

Ndely2

Step 2: Add a DifficultyButton script

Our difficulty buttons look great, but they don’t actually do anything. If they’re going to have
custom functionality, we first need to give them a new script.
1. For all 3 new buttons, in the Button component, in the On Click ()
section, click the minus (-) button to remove the RestartGame
functionality
2. Create a new DifficultyButton.cs script and attach itto all 3
buttons
3. Add using UnityEngine.Ul to your imports
4. Create a new private Button button; variable and initialize it in
Start()

using UnityEngine.UI;
private Button button;

void Start() {
button = GetComponent<Button>(); }

© Unity 2021 Create with Code - Unit 5

20
Step 3: Call SetDifficulty on button click

Now that we have a script for our buttons, we can create a SetDifficulty method and tie that
method to the click of those buttons

1. Create a new void SetDifficulty function, and - New Function: AddListener
inside it, Debug.Log(gameObject.name + " was - Don't worry: onClick.AddListener is
clicked"); similar what we did in the inspector
2. Add the button listener to call the SetDifficulty with the Restart button

- Don't worry: We're just using Debug for
testing, to make sure the buttons are
working

function

void Start() {
button = GetComponent<Button>();
button.onClick.AddListener(SetDifficulty);

}

void SetDifficulty() {
Debug.Log(gameObject.name +

}

was clicked");

© Unity 2021 Create with Code - Unit 5

21
Step 4: Make your buttons start the game

The Title Screen looks great if you ignore the target objects bouncing around, but we have no
way of actually starting the game. We need a StartGame function that can communicate with
SetDifficulty.
1. In GameManager.cs, create a new public void StartGame() - Don't worry: Title objects
function and move everything from Start() into it don't disappear yet - we'll
2. In DifficultyButton.cs, create a new private GameManager do that next
gameManager; and initialize it in Start()
3. In the SetDifficulty() function, call gameManager.startGame();

GameManager.cs

void Start() { ——— }

public void StartGame() {
isGameActive = true;
score = 0;

StartCoroutine(SpawnTarget());
UpdateScore(9);

}

DifficultyButton.cs
private GameManager gameManager;
void Start () {

gameManager = GameObject.Find("Game Manager").GetComponent<GameManager>();

}

void SetDifficulty() {

gameManager.StartGame();

}

© Unity 2021 Create with Code - Unit 5

Step

22
5: Deactivate Title Screen on StartGame

If we want the title screen to disappear when the game starts, we should store them in an
empty object rather than turning them off individually. Simply deactivating the single empty
parent object makes for a lot less work.

1.

Right-click on the Canvas and Create > Empty Object, rename it “Title
Screen”, and drag the 3 buttons and title onto it

2.

3.

In GameManager.cs, create a new public GameObject titleScreen; and
assign it in the inspector
In StartGame(), deactivate the title screen object

public GameObject titleScreen;

StartGame() {
. titleScreen.gameObject.SetActive(false); }

Step

6: Use a parameter to change difficulty

The difficulty buttons start the game, but they still don’t change the game’s difficulty. The last
thing we have to do is actually make the difficulty buttons affect the rate that target objects

spawn.
1.

HPWODN

publi

void

In DifficultyButton.cs, create a new public int difficulty variable, then - New Concept:
in the Inspector, assign the Easy difficulty as 1, Medium as 2, and /= operator
Hard as 3

Add an int difficulty parameter to the StartGame() function

In StartGame(), set spawnRate /= difficulty;

Fix the error in DifficultyButton.cs by passing the difficulty parameter
to StartGame(difficulty)

c int difficulty;

SetDifficulty() {

. gameManager.startGame(difficulty); }

publi
spa

¢ void StartGame(int difficulty) {
wnRate /= difficulty; }

© Unity 2021 Create with Code - Unit 5

Lesson Recap

New
Functionality

New Concepts
and Skills

© Unity 2021

Title screen that lets the user start the game
Difficulty selection that affects spawn rate

AddListener()

Passing parameters between scripts
Divide/Assign (/=) operator
Grouping child objects

23

Create with Code - Unit 5

24

& unity

Challenge 5

Whack-a-Food

Challenge Put your User Interface skills to the test with this whack-a-mole-like challenge

Overview: in which you have to get all the food that pops up on a grid while avoiding the
skulls. You will have to debug buttons, mouse clicks, score tracking, restart
sequences, and difficulty setting to get to the bottom of this one.

Challenge - All of the buttons look nice with their text properly aligned
Outcome: - When you select a difficulty, the spawn rate changes accordingly
- When you click a food, it is destroyed and the score is updated in the
top-left
- When you lose the game, a restart button appears that lets you play again
Challenge In this challenge, you will reinforce the following skills/concepts:
Objectives: - Working with text and button objects to get them looking the way you want

- Using Unity’s various mouse-related methods appropriately

- Displaying variables on text objects properly using concatenation

- Activating and deactivating objects based on game states

- Passing information between scripts using custom methods and
parameters

Challenge - Open your Prototype 5 project
Instructions: - Download the "Challenge 5 Starter Files" from the Tutorial Materials section,
then double-click on it to Import
- In the Project Window > Assets > Challenge 5 > Instructions folder, use the
"Challenge 5 - Outcome” video as a guide to complete the challenge

© Unity 2021 Create with Code - Unit 5

Challenge

The difficulty buttons
look messy

The food is being
destroyed too soon

The Score is being
replaced by the word
“score”

When you lose, there's
no way to Restart

The difficulty buttons
don't change the
difficulty

Bonus Challenge

The game can go on
forever

© Unity 2021

Task

Center the text on the buttons
horizontally and vertically

The food should only be
destroyed when the player
clicks on it, not when the
mouse touches it

It should always say,
“Score: __" with the value
displayed after “Score:”

Make the Restart button
appear on the game over
screen

The spawnRate is always
way too fast. When you click
Easy, the spawnRate should
be slower - if you click Hard,
the spawnRate should be
faster.

Task

Add a “Time: __" display that
counts down from 60 in
whole numbers (i.e. 59, 58,
57, etc) and triggers the
game over sequence when it
reaches 0.

25

Hint

If you expand one of the button
objects in the hierarchy, you'll see a
“Text” object inside - you have to edit
the properties of that “Text” object

OnMouseEnter() detects when the
mouse enters an object’s collider -
OnMouseDown() detects when the
mouse clicks on an object’s collider

When you set the score text, you have
to add (concatenate) the word
“Score: “ and the actual score value

In the GameOver() method, make
sure the restart button is being
reactivated

There is no information (or
parameter) being passed from the
buttons’ script to the Game
Manager’s script - you need to
implement a difficulty parameter

Hint

Google, “Unity Count down timer C#".
It will involve subtracting
“Time.deltaTime"” and using the
Mathf.Round() method to display only
whole numbers.

Create with Code - Unit 5

Challenge Solution

1 Expand each of the “Easy

26

Medium®, and “Hard” buttons to access their “Text” object

properties, then select the horizontal and vertical alignment buttons in the “Paragraph”

4l IndieFlower =}
[Bold al

—

properties
Game Over Text Character
> Restart Button Font
v Title. Screen Font Style
il T Font Size 24
v E. B n ’)
. Line Spacing
¥ | Medium Butegn AR T
Text Paragraph
v Hard Button Alignment
| Text Align By-Geer

2 InTargetX.cs, change OnMouseEnter() to OnMouseDown()

private void OnMousefnter—Down() {

3 In GameManagerX.cs, in UpdateScore(), concatenate the word “Score: “ with the score

value:

public void UpdateScore(int scoreToAdd) {

score += scoreToAdd;

n n n n

scoreText.text = —seore—"Score:

}

+ score;

4 In GameManagerX.cs, in GameOver(), change SetActive(false) to “true”

public void GameOver() {

gameOverText.gameObject.SetActive(true);
restartButton.gameObject.SetActive(fatse—true);

}

5 In GameManagerX.cs, in StartGame(), add an “int difficulty” parameter and divide the
spawnRate by it. Then in DifficultyButtonX.cs, in SetDifficulty(), pass in the “difficulty”

value from the buttons.
GameManagerX.cs

public void StartGame(int difficulty){
spawnRate /= 5—difficulty;

}... }

© Unity 2021

DifficultyButtonX.cs
void SetDifficulty() {

gameManagerX.StartGame(difficulty);

Create with Code - Unit 5

27
Bonus Challenge Solution

X1 Duplicate the “Score Text” object in the hierarchy to create a new “Timer text” object, then in
GameManagerX.cs declare a new TextMeshProUGUI timerText variable and assign it in the

inspector
UnTuuunar Ligin T _—

Background ¥ c: [Game Manager X (Script) L

> Border Script GameManagerX]
Sensor Score Text T Score Text (TextMeshProl @

Timer Text I-ETimer Text (I'extMeshProl]
v Canva_: Tex High Scor: ‘T High Score Text (TextMes @
AR ame Over Text ‘T Game Over Text (TextMes @

Game Over Text Title Screen Title Screen o]

> Restart Button Restart Button o Restart Button (Button) @

X2 In GameManagerX.cs, in StartGame(), set your new timerText variable to your starting time

public void StartGame(int difficulty) {

timelLeft = 60;

X3 In GameManagerX.cs, add an Update() function that, if the game is active, subtracts from the
timeLeft and sets the timerText to a rounded version of that timelLeft. Then, if timeLeft is less
than zero, calls the game over method.

private void Update() {
if (isGameActive) {
timelLeft -= Time.deltaTime;
timerText.SetText("Time: " + Mathf.Round(timeLeft));
if (timelLeft < 0) {
GameOver();

}

© Unity 2021 Create with Code - Unit 5

& unity

28

Unit 5 Lab

Swap out your Assets

Steps:

Step 1: Import and browse the asset librar

Step 2: Replace player with new asset

Step 3: Browse the Asset store

Example of progress by end of lab

———— T
-

Step 4: Replace all non-player primitives

Step 5: Replace the background texture

Length:

Overview:

Project
Outcome:

Learning
Objectives:

© Unity 2021

90 minutes

In this lab, you will finally replace those boring primitive objects with beautiful
dynamic ones. You will either use assets from the provided course library or
browse the asset store for completely new ones to give your game exactly
the look and feel that you want. Then, you will go through the process of
actually swapping in those new assets in the place of your placeholder
primitives. By the end of this lab, your project will be looking a lot better.

All primitive objects are replaced by actual 3D models, retaining the same
basic gameplay functionality.

By the end of this lesson, you will be able to:

- Browse the asset store to find the perfect assets for your project

- Use Nested Prefabs to swap out placeholder objects with real assets
- Adjust material settings to get the resolution and look you want

Create with Code - Unit 5

29

Step 1: Import and browse the asset library

If we are going to swap out our primitive shapes with cool new assets, we need to import those
assets first.

1. Click to download the Course Library assets, - Don't worry: It will take longer than
extract the compressed folder, and then import normal to import these files because it's
the .unitypackage into your project. a lot more files
If you forget how to do this, refer to Lesson 1.1, - Don't worry: Even if you don't think you're
step 2. going to use one of these assets for your

2. Browse through the library to find the assets you player, just choose something for now to
would like to replace your Player and non-player get used to the process

objects with

3 Project
|| creae - | & MEILY!

v ﬁ.ﬁssets
» &5 _Source_Files
b &5 Animals

&3 Characters

b &5 Environments
» Gl Objects

» G5 Particles

Step 2: Replace player with new asset
Now that we have the assets ready to go, the first thing we'll do is replace the Player object

1. Drag the Player object into the “Prefabs” folder to make it - New: Nested Prefabs
a prefab, then double-click on it to open the prefab editor - Tip: Notice how the asset
2. Drag the asset you want into the hierarchy to make it a updates automatically in game
nested prefab of the Player, then scale and position it so V|.ev'v L
. . . - Tip: Isometric view is useful
that it is around the same size and location when resizing and
3. On the parent Player object itself, either Edit the collider to repositioning child objects
be the size of the new asset or replace it with a different
type of collider (e.g. Box)
4. Test testing to make sure it works, then uncheck the

Mesh Renderer component of the primitive

© Unity 2021 Create with Code - Unit 5

https://connect-prd-cdn.unity.com/20210506/f5f470b5-a319-426b-b459-1033840b49ca/Create%20with%20Code%20-%20Course%20Library.zip?_ga=2.19325944.1186801097.1620052249-59568313.1601905412
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2
https://learn.unity.com/tutorial/set-up-your-first-project-in-unity?uv=2018.4&courseId=5cf96c41edbc2a2ca6e8810f&projectId=5caccdfbedbc2a3cef0efe63#5cca0230edbc2a635ca5d6d2

30
Step 3: Browse the Asset store

Even though we have a really great asset library, there may be certain assets you want that
aren't in there. In that case, it might be good to try and find assets in the Unity Asset Store.

1. Click to open the Unity Asset Store - Warning: This will only be possible if

2.

3.

2 Project
Create ™ Q

v % Assets

In the search bar, search for “Synty Studios” or “Low
Poly”, then browse some of the assets

In the Pricing filter, check “Free Assets” to only view
free options, or use the Ratings filter to only see
highly reviewed assets.

. If you find an asset you want to include in your

project, select Add to My Assets, then Open in Unity.
This should automatically open the Package
Manager window in Unity.

. In the top-left corner of the Package Manager, use

the drop-down to view Packages: My Assets, then
locate your new asset in the list and click Download,
then Import.

. Drag the imported assets into a new folder called

“Asset Store”
assets.

then browse through the imported

== Asset Store
P 53 Gems Ultimate Pack
P 53 Course Library

» &3 Materials

T

you can sign into a Unity account

- Explain: The assets for this course
were made by Synty Studios, which
are really good - as you can see, you
normally have to pay for them

- New: Unity Asset Store

- New: “Low Poly” assets

- Warning: Only download “Low Poly”
assets or your project will become
huge, then not web- or
mobile-friendly

- Don't worry: Even if you think you
have all the assets you need, it's still
good to take a look

Step 4: Replace all non-player primitives
Now that we know the basic concept of our project, let’s figure out how we'll get it done.

1.

2.

Repeat the process you used to replace the player
prefab with your other non-player objects
Test to make sure everything is working as expected

© Unity 2021

- Warning: Make sure that, if you are
editing prefabs in the scene, to
Override any changes you make

Create with Code - Unit 5

https://assetstore.unity.com/

31
Step 5: Replace the background texture

Now that our dynamic objects have a new look, we should update the ground / background too.

1. From the Course Library > Textures, (or from a Unity - Tip: You might want to adjust the
Asset Store package), drag a new material onto the resolution/tiling of the material,
Ground / Background object depending on the scale of the

2. To adjust the material’s resolution, in the Material objects
properties (with the sphere next to it), change the - Tip: Natural ground materials like
Main Map Tiling X and Y values grass or dirt do not tend to show

3. To make the material less shiny, in the Material highlights or reflections

properties, uncheck the “Specular highlights” and
“Reflections” settings

Lesson Recap

New Progress e Primitive objects replaced with new assets that function the same way

Art workflow

High vs. Low Poly
Asset Store
Nested Prefabs
Material properties

New Concepts
and Skills

© Unity 2021 Create with Code - Unit 5

& unity

Quiz Unit5

QUESTION CHOICES
- 0000000000000
1 Which of the following follows Unity naming conventions a. Line 1
(especially as they relate to capitalization)? b. Line 2
c. Line 3
1. public void MultiplyScore(int currentScore) { } d. Line 4
2. public void multiplyScore(int CurrentScore) { }
3. public Void MultiplyScore(Int currentScore) { }
4. public Void MultiplyScore(int CurrentScore) { }

2 If there is a boolean in script A that you want to access a. 1 only
in script B, which of the following are true: b. 1 and 2 only
c. 2 and 3 only
1. You need a reference to script A in script B d. 3 and 4 only
2. The boolean needs to be public instead of private e. 1,2,and 3 only
3. The boolean must be true f. All are true

4. The boolean must be included in the Update method

3 Which code to fill in the blank will result in the object a. name = “player” &&
being destroyed? isDead && health < 5
) b. name != “player”

string name = “player” && isDead != true && health > 5

2‘1’01 1;Deid; . c. name == “player” && lisDead
oat health = 3; && health< 5

if () { d. name == “player” && isDead !=
Destroy(gameObject); true && health > 5

¥

© Unity 2021 Create with Code - Unit 5

33

4 You run your game and get the following error message a. In the hierarchy, rename “Game
in the console, “NullReferenceException: Object Manager” to “gameManager”
reference not set to an instance of an object”. Given the b. In the hierarchy, rename “Game
image and code below, what would resolve the problem? Manager” as “GameManager”

c. On Line 1, rename
“GameManager” as “Game
Manager”

d. On Line 3, remove the
GetComponent code

¥ Q Prototype 5
| Main Camera
| Directional Light
| Background
b Border
|/ Sensar
| Game Manager
B | | Canvas
|| EventSystem

1. private GameManager gameManager;
2. void Start() {
3. gameManager = GameObject.Find("GameManager").GetComponent<GameManager>();

4.}
-]

5 Read the Unity documentation below about the a.0
OnMouseDrag event and the code beneath it. What will b. 1
the value of the “counter” variable be if the user clicked c. 99
d. 100
e. A value over 100

and held down the mouse over an object with a collider
for 10 seconds?

MonoBehaviour.OnMouseDrag()

Leave feedback Other Versions

Description

OnMouseDrag is called when the user has clicked on a GUIElement or Collider and is still holding down the mouse.

OnMouseDrag is called every frame while the mouse is down.

int counter = 09;
void OnMouseDrag() {
if (counter < 100) {
counter++;
}
¥

© Unity 2021 Create with Code - Unit 5

34

6

Based on the code below, what will be displayed in the
console when the button is clicked?

. “Welcome, Robert Smith”

. “Welcome, firstName Smith”
. “Button is ready”

. “Welcome + Robert + Smith”

o0 o

private Button button;
private string firstName = "Robert";

void Start() {
button = GetComponent<Button>();
button.onClick.AddListener(DisplayWelcomeMessage);
Debug.Log("Button is ready");

}

void DisplayWelcomeMessage() {
Debug.Log("Welcome, " + "firstName" + " Smith");

)
]

You have declared a new Button variable as “private a. You can't name a button “start”
Button start;”, but there’s an error under the word because that's the name of a
“Button” that says “error CS0246: The type or Unity Event Function
namespace name 'Button’ could not be found (are you b. “Button” should be lowercase
missing a using directive or an assembly reference?)” “button”

What is likely causing that error? c. You are missing “using
UnityEngine.Ul;” from the top of
your class

d. New Button variables must be
made public

8

Look at the documentation and code below. Which of a. Line5
the following lines would NOT produce an error? b. Line 6
c. Line7
d. Line 8

© Unity 2021 Create with Code - Unit 5

35

public void AddForceAtPosition{Vector3 force, Vector3 position, ForceMode mode = ForceMode.Force);

Parameters

force Force vector in world coordinates.

position Position in world coordinates.

Description

Applies force at position. As a result this will apply a torque and force on the object.

1. public Vector3 explosion;
2. Vector3 startPos;
3. float startSpeed;
4. void Start {
5. AddForceAtPosition(50, ©, ForceMode.Impulse)
6. AddForceAtPosition(100, startPos, ForceMode.Impulse)
7. AddForceAtPosition(startSpeed, startPos, ForceMode.Impulse)
8. AddForceAtPosition(explosion, new Vector3(@, 0, 0), ForceMode.Impulse)
9. }
- 0000/
9 If you wanted a button to display the message, “Hello!” a. (SendMessage);
when a button was clicked, what code would you use to b. (SendMessage(“Hello"));
fill in the blank? c. (SendMessage(string Hello));

d. (SendMessage(Hello));

private Button button;
void Start {
button = GetComponent<Button>();
button.onClick.AddListener ;
}
void SendMessage() {
Debug.Log(”Hello!”);

)
]

10 Which of the following is the correct way to declare a a. Line 1
new List of game objects named “enemies”? b. Line 2
c. Line 3
1. public List[GameObjects] enemies; d. Line 4
2. public List(GameObject) "enemies";
3. public List<GameObjects> "enemies";
4. public List<GameObject> enemies;

© Unity 2021 Create with Code - Unit 5

36

Quiz Answer Key
ANSWER EXPLANATION

1 A public void MultiplyScore(int currentScore)
The “public”, “void”, and “int” keywords should be lowercase. Method names
(like “MultiplyScore”) should be Title Case. variable names (like
“currentScore”) should be camelCase.

2 B You always need a variable reference to the script you're trying to access and
that variable must be public.

3 C To compare a string, two =='s are needed. By default, booleans are false
unless declared as true and adding an exclamation mark before lisDead
checks that it’s false. Since health = 3, checking “health < 5" is true.

4 B GameObiject.Find("GameManager") is returning a NullReferenceException
error because there’s no object in the scene named that. If you renamed the
“Game Manager” in the hierarchy to have no spaces, it would be fixed.

5 D Since the function is called “every frame” the mouse is held, it will be called
hundreds of times in 10 seconds. However, the condition will only be true if
the counter is less than 99, meaning it will no longer increase after 100.

6 B If you wanted it to say “Robert Smith”, you would have needed to use the
variable name, firstName, without quotation marks.

7 C In order to use some of the Ul classes like “Button,” you need to include the
“UnityEngine.Ul" library

8 D The first two required parameters are Vector3 variables. Only option D uses
Vector3 variables for those parameters.

9 A SendMessage does not require any parameters - it prints “Hello” no matter
what when it is called. Also, when adding a listener, you just need to include
the method’s name - no parentheses are required.

10 D public List<GameObject> enemies is correct. <GameObject> should be in
angle brackets. You don't need “GameObject” to be plural because it's the
type of object it is. Variable names are never declared with quotation marks
around them.

© Unity 2021 Create with Code - Unit 5

37

& unity

Bonus Features 5 - share your Work

Steps:
Step 1: Overview

Step 2: Easy: Obstacle pyramids

Step 3: Medium: Oncoming vehicles

Step 5: Hard: Camera switcher

Step 6: Expert: Local multiplayer
Step 7: Hints and solution walkthrough

Step 8: Share your work

Length: 60 minutes

Overview: In this tutorial, you can go way above and beyond what you learned in this
Unit and share what you've made with your fellow creators.

There are four bonus features presented in this tutorial marked as Easy,
Medium, Hard, and Expert. You can attempt any number of these, put your
own spin on them, and then share your work!

This tutorial is entirely optional, but highly recommended for anyone wishing
to take their skills to a new level.

© Unity 2021 Create with Code - Unit 5

38
Step 1: Overview

This tutorial outlines four potential bonus features for the Quick Click Prototype at varying levels of
difficulty:

e Easy: Lives Ul

e Medium: Music volume

e Hard: Pause menu

e Expert: Click-and-swipe

Here's what the prototype could look like if you complete all four features:

Score: 15 Lives: 3

The Easy and Medium features can probably be completed entirely with skills from this course, but
the Hard and Expert features will require some additional research.

Since this is optional, you can attempt none of them, all of them, or any combination in between.
You can come up with your own original bonus features as well!

Then, at the end of this tutorial, there is an opportunity to share your work.

We highly recommend that you attempt these using relentless Googling and troubleshooting, but if
you do get completely stuck, there are hints and step-by-step solutions available below.

Good luck!

© Unity 2021 Create with Code - Unit 5

39
Step 2: Easy: Lives Ul

Create a "Lives" Ul element that counts down by 1 when an object leaves the bottom of the screen
and triggers Game Over when Lives reaches 0.

Score: &5 Lives: 3

Step 3: Medium: Music volume

Add background music and a Ul Slider element to adjust the volume.
Background music adds a lot of energy to a game, but not everyone likes it, so it's good to give
people the option to lower the volume.

Score:

Clhcku
\J e

Easy diam

l Volume |—=& |

© Unity 2021 Create with Code - Unit 5

40
Step 5: Hard: Pause menu

During gameplay, allow the user to press a key to toggle between pausing and resuming the game,
where a pause screen comes up while the game is paused.

Paused

Step 6: Expert: Click-and-swipe

Program click-and-swipe functionality instead of clicking, generating a trail where the mouse has
been dragged. This does make the game easier, so you might also want to increase the gameplay
difficulty on all levels if you implement this.

Score: 25

© Unity 2021 Create with Code - Unit 5

41
Step 7: Hints and solution walkthrough

Hints:
e FEasy: Lives Ul
o Try using a Text GameObject like we did for the score
e Medium: Music volume
o Try using the event on the Slider element
e Hard: Pause menu
o Tryusing Time.timeScale
e Expert: Click-and-swipe
o Camera.ScreenToWorldPoint will help convert a screen space position to world
position

Solution walkthrough
If you are really stuck, download the step-by-step solution walkthrough.
Note that there are likely many ways to implement these features - this is only one suggestion.

Step 8: Share your work

Have you implemented any of these bonus features? Have you added any new, unique features?
Have you applied these new features to another project?

We would love to see what you've created!

Please take a screenshot of your project or do a screen-recording walking us through it, then post
it here to share what you've made.

We highly recommend that you comment on at least one other creator's submission. What do you
like about the project? What would be a cool new feature they might consider adding?

© Unity 2021 Create with Code - Unit 5

https://connect-prd-cdn.unity.com/20210505/3181b77f-2009-4506-ae6b-10beabc23d3c/Unit%205%20-%20Bonus%20Features%20and%20Solution.pdf?_ga=2.259926218.1186801097.1620052249-59568313.1601905412

